Dr. Hareklea Markides is a post-doctoral researcher in Tissue Engineering, working in the Regenerative Medicine research group at ISTM. She studied for her PhD at the Doctoral Training Centre in Regenerative Medicine, a partnership between Loughborough, Keele and Nottingham Universities, together with industrial and clinical partners.
You work in Tissue Engineering. What does that mean?
Tissue Engineering is a pioneering field which aims to utilise engineering principles to develop novel strategies to replace and regenerate human cells, tissues and organs in order to restore normal function. The field thrives on the cross collaboration of multiple disciplines to develop tissue engineering approaches to achieve these goals. It harnesses the tools and knowledge developed by material scientists, molecular biologists, engineers and clinicians for the design and development of cellular therapies to treat a broad range of diseases and conditions. The field has experienced several exciting breakthroughs over the years; for example, the development of the first functioning human tissue engineered trachea.
My personal research interests lie in developing technologies to enable research to move out of the lab and closer to the patient. One of the more crucial issues facing tissue engineers at the moment is the ability to control and monitor cells after they have been implanted in the body. I am therefore working in a group where we aim to develop magnetic nanoparticle - based technologies to achieve this. My work involves a lot of trial and error and even more troubleshooting - which I love!! Every day is a challenge and the great thing is that the solution can come from anywhere, from a visit to the mechanical workshop to an elaborate modelling program. The multidisciplinary nature of my work also mean that I am able to collaborate with other research groups which gets me out of the lab and interacting with people on a daily basis. My hope is that one day my work will enable a wide range of therapies to cross over to the clinical side and therefore help patients with debilitating diseases.
What is an exciting project you are working on at the moment?
At the moment I am working on an exciting project to develop a magnetic nanoparticle - based approach to treat sever bone injuries. By attaching and manipulating magnetic nanoparticles tagged to stem cells with an external magnetic field we are able to direct these cells to become bone cells after they have been implanted in the body. This therefore promotes repair of the damaged bone and with time function will be restored. This is a really innovative solution to a long-standing challenge and so by proving that this works for bone can really pave the way for this technology to be used in other tissue engineering areas such as cartilage and tendon repair. This really motivates me every day to carry on and persevere with my research.
How did you become a Post-doctoral Researcher in Tissue Engineering?
One of my very first lectures at University (UCL, Biochemical Engineering) was given by Professor Chris Mason, a cardiothoracic surgeon who had hung up his stethoscope for the promise of regenerative medicine and tissue engineering. During his lecture, he played a YouTube video featuring a group in the USA who had developed a biological substance that when applied to a severed fingertip, successfully encouraged regrowth. This he explained was tissue engineering. I was sold!!
Fast forward 4 years and I found myself enrolling into the Doctoral Training Centre in Regenerative Medicine (Loughborough, Nottingham and Keele Universities). This programme aims to train engineers and life scientists of all backgrounds to contribute to the tissue engineering and regenerative medicine field. My cohort included physicists, electrical engineers, mechanical engineers, biochemical & chemical engineers, chemists, computer scientists and even mathematicians. We were encouraged to apply the knowledge and skills acquired during our undergraduate training to biological scenarios to create solutions and technologies that would progress the field – I felt that this was the best of both worlds for me; utilising my training as an engineer whilst contributing to an emerging field.
The programme offered a foundation year where fundamental tissue engineering principles were introduced which would set us up well for our PhDs. During this foundation year, it became very apparent that my main interest was in orthopaedic tissue engineering, as I found elements of biomechanics fascinating. I completed my PhD at Keele University where I developed a protocol to track cells after they have been implanted in the body using magnetic nanoparticles and magnetic resonance imaging. Following on from this, I accepted a postdoctoral role within the same group to translate an established protocol from the lab to the clinic.
What advice would you give a young person considering a career in engineering?
To a woman thinking of a career in engineering, I would say to definitely go for it – it is no longer a man’s world, it’s not all about nuts and bolts, and it’s certainly not boring. I hope that I have demonstrated how engineering can open doors and that it can really be applied in almost any field. I would also say that it’s really important to surround yourselves with aspiring female engineers to learn how to balance life, family and work. I am very fortunate to have been supervised and mentored by a leading female figure in regenerative medicine and tissue engineering, Professor Alicia El Haj. Working with Alicia has shown me that women are able to reach high positions without sacrificing the all-important family life.
What advice would you give a young person considering a career in engineering?
To a woman thinking of a career in engineering, I would say to definitely go for it – it is no longer a man’s world, it’s not all about nuts and bolts, and it’s certainly not boring. I hope that I have demonstrated how engineering can open doors and that it can really be applied in almost any field. I would also say that it’s really important to surround yourselves with aspiring female engineers to learn how to balance life, family and work. I am very fortunate to have been supervised and mentored by a leading female figure in regenerative medicine and tissue engineering, Professor Alicia El Haj. Working with Alicia has shown me that women are able to reach high positions without sacrificing the all-important family life.
No comments:
Post a Comment